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Abstract

It is shown that for any positive integer n and any function f in &£, ([0, 1)) with pe[l, o)
there exist n half-spaces such that f has a best approximation by a linear combination of their
characteristic functions. Further, any sequence of linear combinations of n half-space
characteristic functions converging in distance to the best approximation distance has a
subsequence converging to a best approximation, i.e., the set of such n-fold linear
combinations is an approximatively compact set.
© 2003 Published by Elsevier Science (USA).
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1. Introduction

An important type of nonlinear approximation is variable-basis approximation,
where the set of approximating functions is formed by linear combinations of n
functions from a given set. This approximation scheme has been widely investigated:
it includes splines with free nodes, trigonometric polynomials with free frequencies,
sums of wavelets, and feedforward neural networks.
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To estimate rates of variable-basis approximation, it is helpful to study properties
like existence, uniqueness, and continuity of corresponding approximation
operators.

We investigate the existence property for one-hidden-layer Heaviside perceptron
networks. Here the approximations are by linear combinations of characteristic
functions of closed half-spaces. (The characteristic function of any subset A is the
function y, with value 1 on the subset and 0 elsewhere.) Such a characteristic
function may also be described as a plane wave obtained by composing the Heaviside
function with an affine function. We show that for all positive integers n,d in
Z,([0, 1)) with pell, o0) there exists a best approximation mapping to the set of
functions computable by Heaviside perceptron networks with »n hidden and d input

units. Thus for any p-integrable function on [0, l}d there is a linear combination of n
characteristic functions of closed half-spaces that is nearest in the £,-norm. A
related proposition is proved by Chui et al. [2], where certain sequences are shown to

have subsequences that converge a.e. These authors work in R? rather than [0, l]d
and show a.e. convergence rather than %, convergence.

2. Heaviside perceptron networks

Feedforward networks compute parametrized sets of functions dependent both on
the type of computational units and their interconnections. Computational units
compute functions of two vector variables: an input vector and a parameter vector. A
standard type of computational unit is the perceptron. A perceptron with an
activation function  : #— R (where Z denotes the set of real numbers) computes
real-valued functions on 29 x #9*! of the form (v - x + b), where xe %2 is an input
vector, ve #¢ is an input weight vector, and be Z is a bias.

The most common activation functions are sigmoidals, i.e., functions with ess-
shaped graph. Both continuous and discontinuous sigmoidals are used. Here we
study networks based on the archetypal discontinuous sigmoidal, namely, the
Heaviside function 3 defined by 3(¢) = 0 for <0 and 9(¢) = 1 for ¢>=0.

Let H; denote the set of functions on [0, 1}‘1 computable by Heaviside perceptrons,
i.e.,

Hy={f:[0.11">2:f(x) = 9(v-x +b), ve !, ben}.

Hy is the set of characteristic functions of closed half-spaces of #¢ restricted to
[0, l]d, which is a subset of the set of plane waves (see, e.g., [3, pp. 676-681]).

The simplest type of multilayer feedforward network has one hidden layer and one
linear output. Such networks with Heaviside perceptrons in the hidden layer
compute functions of the form

Z W,'S(Vl' - X + b,’),

i=1
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where n is the number of hidden units, w;e # are output weights, and v,e#? and
bie # are input weights and biases, respectively.

The set of all such functions is the set of all linear combinations of n elements of Hy
and is denoted by span, H,.

It is known that for all positive integers d, | J span, H; (where /", denotes

neN .
the set of all positive integers) is dense in (%([0,1]"), [|-ll4), the linear space of all
continuous functions on [0, l}d with the supremum norm, as well as in
(Z,([o, 1%, [I.I[,) with pe[l, oo] (see, e.g., [11] or [10]). We study best approxima-
tion in span, H, for a fixed n.

3. Best approximation and approximative compactness

Existence of a best approximation has been formalized in approximation theory
by the concept of proximinal set (sometimes also called “‘existence” set). A subset M
of a normed linear space (X, ||.||) is called proximinal if for every f € X the distance
||f— M|| =infyer || f — g]| is achieved for some element of M, ie., ||f — M| =
minge u || f — g|| [14]. Clearly a proximinal subset must be closed.

A sufficient condition for proximinality of a subset M of a normed linear space
(X, [|.I]) is compactness. Indeed, for each f'€ X the functional ef ;) : M — % defined
by e;sy(m) =||f —m]| is continuous [14, p. 391] and hence must achieve its
minimum on the compact set M. Two generalizations of compactness also imply
proximinality. A set M is called boundedly compact if the closure of its intersection
with any bounded set is compact. A set M is called approximatively compact if for
each feX and any sequence {g;: ie A"} in M such that lim; . ||f — g =
||f — M]|, there exists ge M such that {g;: ie./";} converges subsequentially to g
[14, p. 368]. Any closed, boundedly compact set is approximatively compact, and any
approximatively compact set is proximinal [14, p. 374].

Gurvits and Koiran [6] have shown that for all positive integers d the set of
characteristic functions of half-spaces H; is compact in (Z,([0, 119, I.I[,) with
pe(l, o0). This can be easily verified once the set H, is reparametrized by elements of
the unit sphere S¢ in #?*!. Indeed, a function 9(v-x+b), with the vector
(v1, ...,v4,b) € 2" nonzero, is equal to 9(0-x+1§), where (91, ...,ﬁd,l;)eSd is
obtained from (v, ...,v4,b) e“"" by normalization. Strictly speaking, H, is
parametrized by equivalence classes in S? since different parametrizations may

represent the same member of H; when restricted to [0, l]d. Since S¢ is compact, and
the quotient spaces formed by the equivalence classes is likewise, so is Hy.
However, span, H; is not compact for any positive integer n. Nor is it boundedly
compact.
The following theorem shows that span, H; is approximatively compact in Z,-
spaces. It extends a result of Ktrkova [9], who showed that span, Hy is closed in .Z,,-
spaces with pe(1, o).
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Theorem 3.1. For every n,d positive integers and for every pe[l, o0) span, Hy is an
approximatively compact subset of (Z,([0, 1), II-11,,)-

To prove the theorem we need the following lemma. For a set 4, let (A) denote
the set of all subsets of A.

Lemma 3.2. Let m be a positive integer, {aj: ke N\, j=1,...,m} be m sequences of
real numbers, and & = 2({1, ..., m}) be such that for each Se &, limy, oo > ;s A =
cs for some cge R. Then there exist real numbers {a;: j =1, ...,m} such that for each

SeS, Y es 4 =Cs.

Proof. Let p=card¥ and let & ={Si,...,S,}. Define T:%"—>% by

T(x1, ... %m) = (Xjes, Xj» -5 2jes, Xj)- Then T is linear, and hence its range is a
subspace of #” and so is a closed set. Since (cs,, ..., cs,)€cl T(#") = T(#™), there
exists (ap, ..., am) €A™ with (cs,, ..., cs,) = T(ai, ...,a,). O

Proof of Theorem 3.1. Let fe.Z,([0, 1) and let {3051 apgin: keA".} be a
sequence of elements of span, H; such that limg_, o ||f — 27:1 ajkgjk||p =|f -
span,, Hde. Since H,; is compact, by passing to suitable subsequences we can

assume that for all j=1,...,n, there exist gie H; such that limy_ o gx = gj
(here and in the sequel, we use the notation limy_, ., to mean a limit of a suitable
subsequence).

We shall show that there exist real numbers «y, ..., a, such that

I/ = spany Hal|, = (1)

n
=Y ay;
=

Then using (1) we shall show even that {} ', axgy: ke./'} converges to
>oi-1 @g; in ||.]|, subsequentially.

Decompose {l1,...,n} into two disjoint subsets I and J such that I consists of
those j for which the sequences {a;: ke./", } have convergent subsequences, and J
of those j for which the sequences {|aj|: ke 4 ,} diverge. Again, by passing to
suitable subsequences we can assume that for all jel, limy., o ax = a;. Thus
{2 2jer aigp: ke N1} converges subsequentially to 3, a;g;.

Set h=f—3%;c; ag;. Since for all jel, the chosen subsequences {au: ke A"}
and {gu: ke A",} are bounded, we have ||/ —span, Hqll, =limy o [|f —
>t @iegiell, = limyo oo |1 =355 augil],-

Let % denote the set of all subsets of J. Decompose & into two disjoint subsets

&1 and &, such that &; consists of those Se.% for which by passage to suitable
subsequences limy _, o, ZjeS ay. = cs for some cge %, and . consists of those Se ¥

p

for which limg_, o |3 ;.5 ai| = 0. Note that the empty set is in ¥ with the
convention > ;_, = 0.
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Using Lemma 3.2, for all je u%, we get qje# such that for all Se¥,
Yjey @ =cs. For jeJ — v.7, set q; = 0.

Since Y7, a;g; € spany Hy, we have || f — span, Ha||,<||f — >/_; a;g;l|, and thus
to prove (1), it is sufficient to show that [|f — span, Hall,>|f = >, agjl|, or

equivalently
P P
lim , h— Z a9k dﬂ? / . h— Z a;g; d,u, (2)
le= e 0.1y el [01]° el

where u is Lebesgue measure on [0, 1]°.

To verify (2), for each ke 4", we shall decompose the integration over [0, l}d into
a sum of integrals over convex regions where the functions  ;_; ajxg; are constant.
To describe such regions, we shall define partitions of [0, l]d determined by families
of characteristic functions {gu: jeJ, ke./",}, and {g;: jeJ}. The partitions are
indexed by the elements of the set .% of all subsets of J. For ke /", , a partition
{T(S): S} is defined by Ty (S) = {xe[0,1]": (g (x) = 1 <jeS)}, and similarly
a partition {T(S): Se.%} is defined by T(S) = {xe[0, 1]*: gj(x) = 1+jeS}. Note
that since for all j=1,....n, lim,,gx=g; in ZL,([0, l]d), we have
limg o, oo (T (S)) = u(T(S)) for all Se.&. Indeed, the characteristic function of
Ti(S), 17.s), equals the product [[; s gix [[;45 (1 —gx) and converges in
Z,([0, 1Y) to the characteristic function of T(S), X7(s), the latter equal to
HjeS 9gj Hj¢s(1 - gj)-

Using the definition of T} (S) (in particular its property guaranteeing that for all
Sed, Tr(S) is just the region where for all j€.S and no other jeJ, gy is equal to 1),
we get

p
lim h=>" awgi du_ Jim > / h=>" ap
k= 0.1 jeJ © Sewy JTi(S) jes
4
= lim / h— Ak d,u+ / h— Ajc d,u)
’H%<s;1 Ti(S) ; sz; Ti(S) ]E;
> lim / =Y ay (3)
k— oo S;] Ti(S) ;

Since for all Se9, limg, o, u(Tx(S)) =p(T(S)) and for all Se&y,
klin}n djes Ak =Cs =) ;s @j, we have
p

h— Zafk d,u_hm Z /T(S
k

jes Ses
-y [ X
Se¥ T(S) jes

h— Zaj

JjeSs

lim /
k= SE; T(S)

p
du.
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For all Se%, by the triangle inequality in £, (T%(S))
5

14 1/p
lim / du
k= \J1i(8) | jes

< lim / h— Ak
i ([ X

4 1/p l/p
du) + < / |l du)
Ti(S)

JjeSs
P 1/p 1/p
< lim / h— apgi| dp |  + / hlP du
k*}OC( [011]4 /Ee; TS [0’1](1| |

= ||f — span, Hal|, + ||A]]-
Thus for all Se.%, lim;_, o, fms) | ZjeS ap|” du is finite. In particular this is true
when Se ¥, for which limy, . [ g ail’ = oo, and so limy_, o, u(Tk(S)) =0=

w(T(S)) for Se&,. Hence, we can replace integration over (Jg.o, T(S) by

integration over the whole of [0, 1], obtaining

p
SE; /T<S> ho 2 ) du= /[0,1],, h=>_ a9

JjES jeJ
which proves (2). Moreover, as a byproduct we even get that

h—Zajk

jes

V4
du,

P

lim /
ke o0 S;z Ti(S)

since in (3) the first expression is equal to the last (both are equal to
\f = span, Hall}).

So we have shown that span, H; is proximinal. Now we shall verify that it is even
approximatively compact by showing that {Zje 7 igi: ke A"} converges

subsequentially to ., a;g;, or equivalently

P
lim dy = 0. (5)
k— [071]4

> (argi — @)

jelJ

As above, we start by decomposing the integration into a sum of integrals over
convex regions. The left-hand side of (5) is equal to

P
lim / (aix — ajg;)| dp+ /
dm D ) 2 e > Ji

Se¥ jes Se S

»
du.

> (ax — aig))
jes
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Using the triangle inequality, (4), and limk, o, u(7%(S)) = 0 for all Se€ %>, we get

»
lim E / E ay. — a;g;
Pt () (ajx — a;9;)
P
d,u)

du
Se9> jes
P
< lim / h— ap| du+ / h— aig;
k%oc(S;Z 74(S) Z J Z 7u(S) Z J9]

jes Sed> JjeS
P P
— lim / h— a;g;| du = / h— ajg;| du=20
o= o0 S;z Ti(S) ; S;z () ;

since u(7(S)) =0 for Se.¥>.

Thus limy o Y seo, J7,05 | 2Djes (@x — @g)l” dp =0, which implies that the
left-hand side of (5) is equal to
P

lim / (@ — ag;)| du= / | > @9 — ag;" du=0
k— o0 S;”l T (S) /EZS 5;1 T(S IEZS
because (D ics angi)ir.(s) = (Djes GK)Ar sy ~ converges  to  Csip(s) =

: d
(ZjeS ajgj)XT(S) in Z,([0, 1]%).
Solimk, oo D e gk = ey 49, the same is already known to be true when J

is replaced by 1, and hence also limi—, o Y77, airgx = Y7 @g; subsequentially in
Z,((0,11). O

Theorem 3.1 shows that a function in £, (|0, 1)) has a best approximation among
functions computable by one-hidden-layer networks with a single linear output unit
and n Heaviside perceptrons in the hidden layer. In other words, in the space of
parameters of networks of this type, there exists a global minimum of the error
functional defined as #,-distance from the function to be approximated.

Combining Theorem 3.1 with Theorem 2.2 of [8] (see also [7]), we note that while
such best approximation operators exist from %, ([0, l]d) to span,, Hy, they cannot be
continuous for pe (1, w0).

4. Discussion

In Proposition 3.3 of [2] the authors show that any sequence {Px} in span, Hy
(domain taken to be R here), with the property that lim sup, || Py|| PR L for every

compact set K in R?, has a subsequence converging a.e. in R? to a member of
span, H;. Although the proof techniques in [2] do have some overlap with those used
here, the results there are different. A.e. convergence need not imply %, convergence

1
for pe[l, o0): the sequence Py = (k)Py,, where 4 = [0,4] x [0, 17!, converges a.e.
in Z,(RY) but has no convergent subsequence in the Z,-norm.
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Since the sequence { Py} above is bounded and lies in span; H,; (with respect to

Z,([0, 1]%)), it also illustrates that span; Hy, and hence span, Hy, are not boundedly
compact. Another example of an approximatively compact set that is not boundedly
compact is any closed infinite-dimensional subspace of a uniformly convex Banach
space [14, pp. 368-369].

Theorem 3.1 cannot be extended to perceptron networks with differentiable
activation functions, e.g., the logistic sigmoid or hyperbolic tangent. For such
functions, sets span, P;(y) (where Py(y)={f:]0, l]d—n% S(x)=y(v-x+b),
ve#! be#}) are not closed and hence cannot be proximinal. This was first
observed by Girosi and Poggio [5] and later exploited by Leshno et al. [10] for a
proof of the universal approximation property.

Theorem 3.1 does not offer any information on the error of the best
approximation. Estimates in the literature [4,12,13]) that give lower bounds on such
errors and depend on continuity of best approximation operators are not applicable
by the remarks at the end of Section 3.

Cheang and Barron [1] show that linear combinations of characteristic functions
of closed half-spaces with relatively few terms can yield good approximations of such
functions as the characteristic function y 5 of a ball. However, y is not approximated
by the linear combination itself but rather by the characteristic function of the set
where the linear combination exceeds a certain threshold. This amounts to replacing
a linear output in the corresponding neural network by a threshold unit.
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