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Abstract

It is shown that for any positive integer n and any function f in Lpð½0; 1�dÞ with pA½1;NÞ
there exist n half-spaces such that f has a best approximation by a linear combination of their

characteristic functions. Further, any sequence of linear combinations of n half-space

characteristic functions converging in distance to the best approximation distance has a

subsequence converging to a best approximation, i.e., the set of such n-fold linear

combinations is an approximatively compact set.
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1. Introduction

An important type of nonlinear approximation is variable-basis approximation,
where the set of approximating functions is formed by linear combinations of n

functions from a given set. This approximation scheme has been widely investigated:
it includes splines with free nodes, trigonometric polynomials with free frequencies,
sums of wavelets, and feedforward neural networks.
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To estimate rates of variable-basis approximation, it is helpful to study properties
like existence, uniqueness, and continuity of corresponding approximation
operators.

We investigate the existence property for one-hidden-layer Heaviside perceptron
networks. Here the approximations are by linear combinations of characteristic
functions of closed half-spaces. (The characteristic function of any subset A is the
function wA with value 1 on the subset and 0 elsewhere.) Such a characteristic
function may also be described as a plane wave obtained by composing the Heaviside
function with an affine function. We show that for all positive integers n; d in

Lpð½0; 1�dÞ with pA½1;NÞ there exists a best approximation mapping to the set of

functions computable by Heaviside perceptron networks with n hidden and d input

units. Thus for any p-integrable function on ½0; 1�d there is a linear combination of n

characteristic functions of closed half-spaces that is nearest in the Lp-norm. A

related proposition is proved by Chui et al. [2], where certain sequences are shown to

have subsequences that converge a.e. These authors work in Rd rather than ½0; 1�d
and show a.e. convergence rather than Lp convergence.

2. Heaviside perceptron networks

Feedforward networks compute parametrized sets of functions dependent both on
the type of computational units and their interconnections. Computational units

compute functions of two vector variables: an input vector and a parameter vector. A
standard type of computational unit is the perceptron. A perceptron with an
activation function c :R-R (where R denotes the set of real numbers) computes

real-valued functions on Rd �Rdþ1 of the form cðv � xþ bÞ; where xARd is an input

vector, vARd is an input weight vector, and bAR is a bias.
The most common activation functions are sigmoidals, i.e., functions with ess-

shaped graph. Both continuous and discontinuous sigmoidals are used. Here we
study networks based on the archetypal discontinuous sigmoidal, namely, the
Heaviside function W defined by WðtÞ ¼ 0 for to0 and WðtÞ ¼ 1 for tX0:

Let Hd denote the set of functions on ½0; 1�d computable by Heaviside perceptrons,
i.e.,

Hd ¼ f f : ½0; 1�d-R : f ðxÞ ¼ Wðv � xþ bÞ; vARd ; bARg:

Hd is the set of characteristic functions of closed half-spaces of Rd restricted to

½0; 1�d ; which is a subset of the set of plane waves (see, e.g., [3, pp. 676–681]).
The simplest type of multilayer feedforward network has one hidden layer and one

linear output. Such networks with Heaviside perceptrons in the hidden layer
compute functions of the form

Xn

i¼1

wiWðvi � xþ biÞ;
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where n is the number of hidden units, wiAR are output weights, and viARd and
biAR are input weights and biases, respectively.

The set of all such functions is the set of all linear combinations of n elements of Hd

and is denoted by spann Hd :
It is known that for all positive integers d;

S
nANþ

spann Hd (where Nþ denotes

the set of all positive integers) is dense in ðCð½0; 1�dÞ; jj:jjCÞ; the linear space of all

continuous functions on ½0; 1�d with the supremum norm, as well as in

ðLpð½0; 1�dÞ; jj:jjpÞ with pA½1;N� (see, e.g., [11] or [10]). We study best approxima-

tion in spann Hd for a fixed n:

3. Best approximation and approximative compactness

Existence of a best approximation has been formalized in approximation theory
by the concept of proximinal set (sometimes also called ‘‘existence’’ set). A subset M

of a normed linear space ðX ; jj:jjÞ is called proximinal if for every fAX the distance
jj f 
 Mjj ¼ infgAM jj f 
 gjj is achieved for some element of M; i.e., jj f 
 Mjj ¼
mingAM jj f 
 gjj [14]. Clearly a proximinal subset must be closed.

A sufficient condition for proximinality of a subset M of a normed linear space
ðX ; jj:jjÞ is compactness. Indeed, for each fAX the functional ef f g : M-R defined

by ef f gðmÞ ¼ jj f 
 mjj is continuous [14, p. 391] and hence must achieve its

minimum on the compact set M: Two generalizations of compactness also imply
proximinality. A set M is called boundedly compact if the closure of its intersection
with any bounded set is compact. A set M is called approximatively compact if for
each fAX and any sequence fgi: iANþg in M such that limi-N jj f 
 gijj ¼
jj f 
 Mjj; there exists gAM such that fgi: iANþg converges subsequentially to g

[14, p. 368]. Any closed, boundedly compact set is approximatively compact, and any
approximatively compact set is proximinal [14, p. 374].

Gurvits and Koiran [6] have shown that for all positive integers d the set of

characteristic functions of half-spaces Hd is compact in ðLpð½0; 1�dÞ; jj:jjpÞ with

pA½1;NÞ: This can be easily verified once the set Hd is reparametrized by elements of

the unit sphere Sd in Rdþ1: Indeed, a function Wðv � xþ bÞ; with the vector

ðv1;y; vd ; bÞARdþ1 nonzero, is equal to Wð#v � xþ b̂Þ; where ð#v1;y; #vd ; b̂ÞASd is

obtained from ðv1;y; vd ; bÞARdþ1 by normalization. Strictly speaking, Hd is

parametrized by equivalence classes in Sd since different parametrizations may

represent the same member of Hd when restricted to ½0; 1�d : Since Sd is compact, and
the quotient spaces formed by the equivalence classes is likewise, so is Hd :

However, spann Hd is not compact for any positive integer n: Nor is it boundedly
compact.

The following theorem shows that spann Hd is approximatively compact in Lp-

spaces. It extends a result of Kůrková [9], who showed that spann Hd is closed in Lp-

spaces with pAð1;NÞ:
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Theorem 3.1. For every n; d positive integers and for every pA½1;NÞ spann Hd is an

approximatively compact subset of ðLpð½0; 1�d ; jj:jjpÞ:

To prove the theorem we need the following lemma. For a set A; let PðAÞ denote
the set of all subsets of A:

Lemma 3.2. Let m be a positive integer, fajk: kANþ; j ¼ 1;y;mg be m sequences of

real numbers, and SDPðf1;y;mgÞ be such that for each SAS; limk-N

P
jAS ajk ¼

cS for some cSAR: Then there exist real numbers faj: j ¼ 1;y;mg such that for each

SAS;
P

jAS aj ¼ cS:

Proof. Let p ¼ card S and let S ¼ fS1;y;Spg: Define T :Rm-Rp by

Tðx1;y; xmÞ ¼ ð
P

jAS1
xj;y;

P
jASp

xjÞ: Then T is linear, and hence its range is a

subspace of Rp and so is a closed set. Since ðcS1
;y; cSp

ÞAcl TðRmÞ ¼ TðRmÞ; there

exists ða1;y; amÞARm with ðcS1
;y; cSp

Þ ¼ Tða1;y; amÞ: &

Proof of Theorem 3.1. Let fALpð½0; 1�dÞ and let f
Pn

j¼1 ajkgjk: kANþg be a

sequence of elements of spann Hd such that limk-N jj f 

Pn

j¼1 ajkgjkjjp ¼ jj f 

spann Hd jjp: Since Hd is compact, by passing to suitable subsequences we can

assume that for all j ¼ 1;y; n; there exist gjAHd such that limk-N gjk ¼ gj

(here and in the sequel, we use the notation limk-N to mean a limit of a suitable
subsequence).

We shall show that there exist real numbers a1;y; an such that

jj f 
 spann Hd jjp ¼ f 

Xn

j¼1

ajgj

�����
�����

�����
�����
p

: ð1Þ

Then using (1) we shall show even that f
Pn

j¼1 ajkgjk: kANþg converges toPn
j¼1 ajgj in jj:jjp subsequentially.

Decompose f1;y; ng into two disjoint subsets I and J such that I consists of
those j for which the sequences fajk: kANþg have convergent subsequences, and J

of those j for which the sequences fjajkj: kANþg diverge. Again, by passing to

suitable subsequences we can assume that for all jAI ; limk-N ajk ¼ aj: Thus

f
P

jAI ajkgjk: kANþg converges subsequentially to
P

jAI ajgj:

Set h ¼ f 

P

jAI ajgj: Since for all jAI ; the chosen subsequences fajk: kANþg
and fgjk: kANþg are bounded, we have jj f 
 spann Hd jjp ¼ limk-N jj f 
Pn

j¼1 ajkgjkjjp ¼ limk-N jjh 

P

jAJ ajkgjkjjp:
Let S denote the set of all subsets of J: Decompose S into two disjoint subsets

S1 and S2 such that S1 consists of those SAS for which by passage to suitable
subsequences limk-N

P
jAS ajk ¼ cS for some cSAR; and S2 consists of those SAS

for which limk-N j
P

jAS ajkj ¼ N: Note that the empty set is in S1 with the

convention
P

jAf ¼ 0:
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Using Lemma 3.2, for all jA,S1; we get ajAR such that for all SAS1;P
jAS aj ¼ cS: For jAJ 
,S1; set aj ¼ 0:

Since
Pn

j¼1 ajgjAspann Hd ; we have jj f 
 spann Hd jjppjj f 

Pn

j¼1 ajgjjjp and thus

to prove (1), it is sufficient to show that jj f 
 spann Hd jjpXjj f 

Pn

j¼1 ajgjjjp or

equivalently

lim
k-N

Z
½0;1�d

h 

X
jAJ

ajkgjk

�����
�����
p

dmX
Z
½0;1�d

h 

X
jAJ

ajgj

�����
�����
p

dm; ð2Þ

where m is Lebesgue measure on ½0; 1�d :
To verify (2), for each kANþ we shall decompose the integration over ½0; 1�d into

a sum of integrals over convex regions where the functions
P

jAJ ajkgjk are constant.

To describe such regions, we shall define partitions of ½0; 1�d determined by families
of characteristic functions fgjk: jAJ; kANþg; and fgj: jAJg: The partitions are

indexed by the elements of the set S of all subsets of J: For kANþ; a partition

fTkðSÞ: SASg is defined by TkðSÞ ¼ fxA½0; 1�d : ðgjkðxÞ ¼ 13jASÞg; and similarly

a partition fTðSÞ: SASg is defined by TðSÞ ¼ fxA½0; 1�d : gjðxÞ ¼ 13jASg: Note

that since for all j ¼ 1;y; n; limk-N gjk ¼ gj in Lpð½0; 1�dÞ; we have

limk-N mðTkðSÞÞ ¼ mðTðSÞÞ for all SAS: Indeed, the characteristic function of
TkðSÞ; wTkðSÞ; equals the product

Q
jAS gjk

Q
jeS ð1 
 gjkÞ and converges in

Lpð½0; 1�dÞ to the characteristic function of TðSÞ; wTðSÞ; the latter equal toQ
jAS gj

Q
jeSð1 
 gjÞ:

Using the definition of TkðSÞ (in particular its property guaranteeing that for all
SAS; TkðSÞ is just the region where for all jAS and no other jAJ; gjk is equal to 1),

we get

lim
k-N

Z
½0;1�d

h 

X
jAJ

ajkgjk

�����
�����
p

dm ¼ lim
k-N

X
SAS

Z
TkðSÞ

h 

X
jAS

ajk

�����
�����
p

dm

¼ lim
k-N

X
SAS1

Z
TkðSÞ

h 

X
jAS

ajk

�����
�����
p

dmþ
X

SAS2

Z
TkðSÞ

h 

X
jAS

ajk

�����
�����
p

dm

 !

X lim
k-N

X
SAS1

Z
TkðSÞ

h 

X
jAS

ajk

�����
�����
p

dm: ð3Þ

Since for all SAS; limk-N mðTkðSÞÞ ¼ mðTðSÞÞ and for all SAS1;
lim

k-N

P
jAS ajk ¼ cS ¼

P
jAS aj ; we have

lim
k-N

X
SAS1

Z
TkðSÞ

h 

X
jAS

ajk

�����
�����
p

dm ¼ lim
k-N

X
SAS1

Z
TkðSÞ

h 

X
jAS

aj

�����
�����
p

dm

¼
X

SAS1

Z
TðSÞ

h 

X
jAS

aj

�����
�����
p

dm:
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For all SAS; by the triangle inequality in LpðTkðSÞÞ

lim
k-N

Z
TkðSÞ

X
jAS

ajk

�����
�����
p

dm

 !1=p

p lim
k-N

Z
TkðSÞ

h 

X
jAS

ajk

�����
�����
p

dm

 !1=p

þ
Z

TkðSÞ
jhjp dm

 !1=p
0
@

1
A

p lim
k-N

Z
½0;1�d

h 

X
jAJ

ajkgjk

�����
�����
p

dm

 !1=p

þ
Z
½0;1�d

jhjp dm

 !1=p

¼ jj f 
 spann Hd jjp þ jjhjjp:

Thus for all SAS; limk-N

R
TkðSÞ j

P
jAS ajkjp dm is finite. In particular this is true

when SAS2; for which limk-N j
P

jAS ajkjp ¼ N; and so limk-N mðTkðSÞÞ ¼ 0 ¼
mðTðSÞÞ for SAS2: Hence, we can replace integration over

S
SAS1

TðSÞ by

integration over the whole of ½0; 1�d ; obtaining

X
SAS1

Z
TðSÞ

h 

X
jAS

aj

�����
�����
p

dm ¼
Z
½0;1�d

h 

X
jAJ

ajgj

�����
�����
p

dm;

which proves (2). Moreover, as a byproduct we even get that

lim
k-N

X
SAS2

Z
TkðSÞ

h 

X
jAS

ajk

�����
�����
p

dm ¼ 0; ð4Þ

since in (3) the first expression is equal to the last (both are equal to

jj f 
 spann Hd jjpp).
So we have shown that spann Hd is proximinal. Now we shall verify that it is even

approximatively compact by showing that f
P

jAJ ajkgjk: kANþg converges

subsequentially to
P

jAJ ajgj ; or equivalently

lim
k-N

Z
½0;1�d

X
jAJ

ðajkgjk 
 ajgjÞ
�����

�����
p

dm ¼ 0: ð5Þ

As above, we start by decomposing the integration into a sum of integrals over
convex regions. The left-hand side of (5) is equal to

lim
k-N

X
SAS1

Z
TkðSÞ

X
jAS

ðajk 
 ajgjÞ
�����

�����
p

dmþ
X

SAS2

Z
TkðSÞ

X
jAS

ðajk 
 ajgjÞ
�����

�����
p

dm:
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Using the triangle inequality, (4), and limk-N mðTkðSÞÞ ¼ 0 for all SAS2; we get

lim
k-N

X
SAS2

Z
TkðSÞ

X
jAS

ðajk 
 ajgjÞ
�����

�����
p

dm

p lim
k-N

X
SAS2

Z
TkðSÞ

h 

X
jAS

ajk

�����
�����
p

dmþ
X

SAS2

Z
TkðSÞ

h 

X
jAS

ajgj

�����
�����
p

dm

 !

¼ lim
k-N

X
SAS2

Z
TkðSÞ

h 

X
jAS

ajgj

�����
�����
p

dm ¼
X

SAS2

Z
TðSÞ

h 

X
jAS

ajgj

�����
�����
p

dm ¼ 0

since mðTðSÞÞ ¼ 0 for SAS2:

Thus limk-N

P
SAS2

R
TkðSÞ j

P
jAS ðajk 
 ajgjÞjp dm ¼ 0; which implies that the

left-hand side of (5) is equal to

lim
k-N

X
SAS1

Z
TkðSÞ

X
jAS

ðajk 
 ajgjÞ
�����

�����
p

dm ¼
X

SAS1

Z
TðSÞ

j
X
jAS

ajgj 
 ajgjjp dm ¼ 0

because ð
P

jAS ajkgjkÞwTkðSÞ ¼ ð
P

jAS ajkÞwTkðSÞ converges to cSwTðSÞ ¼
ð
P

jAS ajgjÞwTðSÞ in Lpð½0; 1�dÞ:
So limk-N

P
jAJ ajkgjk ¼

P
jAJ ajgj ; the same is already known to be true when J

is replaced by I ; and hence also limk-N

Pn
j¼1 ajkgjk ¼

Pn
j¼1 ajgj subsequentially in

Lpð½0; 1�dÞ: &

Theorem 3.1 shows that a function in Lpð½0; 1�dÞ has a best approximation among

functions computable by one-hidden-layer networks with a single linear output unit
and n Heaviside perceptrons in the hidden layer. In other words, in the space of
parameters of networks of this type, there exists a global minimum of the error
functional defined as Lp-distance from the function to be approximated.

Combining Theorem 3.1 with Theorem 2.2 of [8] (see also [7]), we note that while

such best approximation operators exist from Lpð½0; 1�dÞ to spann Hd ; they cannot be

continuous for pAð1;NÞ:

4. Discussion

In Proposition 3.3 of [2] the authors show that any sequence fPkg in spann Hd

(domain taken to be Rd here), with the property that lim supk jjPkjjL1ðKÞp1 for every

compact set K in Rd ; has a subsequence converging a.e. in Rd to a member of
spann Hd : Although the proof techniques in [2] do have some overlap with those used
here, the results there are different. A.e. convergence need not imply Lp convergence

for pA½1;NÞ: the sequence Pk ¼ ðkÞ
1
pwA; where A ¼ ½0; 1

k
� � ½0; 1�d
1; converges a.e.

in LpðRdÞ but has no convergent subsequence in the Lp-norm.
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Since the sequence fPkg above is bounded and lies in span1 Hd (with respect to

Lpð½0; 1�dÞ), it also illustrates that span1 Hd ; and hence spann Hd ; are not boundedly

compact. Another example of an approximatively compact set that is not boundedly
compact is any closed infinite-dimensional subspace of a uniformly convex Banach
space [14, pp. 368–369].

Theorem 3.1 cannot be extended to perceptron networks with differentiable
activation functions, e.g., the logistic sigmoid or hyperbolic tangent. For such

functions, sets spann PdðcÞ (where PdðcÞ ¼ f f : ½0; 1�d-R : f ðxÞ ¼ cðv � xþ bÞ;
vARd ; bARg) are not closed and hence cannot be proximinal. This was first
observed by Girosi and Poggio [5] and later exploited by Leshno et al. [10] for a
proof of the universal approximation property.

Theorem 3.1 does not offer any information on the error of the best
approximation. Estimates in the literature [4,12,13]) that give lower bounds on such
errors and depend on continuity of best approximation operators are not applicable
by the remarks at the end of Section 3.

Cheang and Barron [1] show that linear combinations of characteristic functions
of closed half-spaces with relatively few terms can yield good approximations of such
functions as the characteristic function wB of a ball. However, wB is not approximated
by the linear combination itself but rather by the characteristic function of the set
where the linear combination exceeds a certain threshold. This amounts to replacing
a linear output in the corresponding neural network by a threshold unit.
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[9] V. Kůrková, Approximation of functions by perceptron networks with bounded number of hidden

units, Neural Networks 8 (1995) 745–750.

[10] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a

nonpolynomial activation can approximate any function, Neural Networks 6 (1993) 861–867.

[11] H.N. Mhaskar, C. Micchelli, Approximation by superposition of sigmoidal and radial basis

functions, Adv. Appl. Math. 13 (1992) 350–373.

[12] A. Pinkus, n-Width in Approximation Theory, Springer, Berlin, 1989.

[13] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999)

143–195.

[14] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer,

Berlin, 1970.

P.C. Kainen et al. / Journal of Approximation Theory 122 (2003) 151–159 159


	Best approximation by linear combinations of characteristic functions of half-spaces
	Introduction
	Heaviside perceptron networks
	Best approximation and approximative compactness
	Discussion
	Acknowledgements
	References


